M-math 2nd year Final Exam Subject: Fourier Analysis

Time: 3.00 hours Max.Marks 60.

- 1. Let $\psi \in L^2(\mathbb{R}) \cap L^1(\mathbb{R})$ be a continuum wavelet i.e it satisfies $\int_{\mathbb{R}} |\hat{\psi}(x)|^2 \frac{dx}{|x|} < \infty, \text{ where } \hat{\psi} \text{ is the Fourier transform of } \psi. \text{ Show that } \int_{\mathbb{R}} \psi(x) \ dx = 0.$ (10)
- 2. Let d > 1 be an integer. Show that the trigonometric polynomials are dense in $L^1(T^d)$, where $T^d := (0,1)^d$, the d-fold Cartesian product of (0,1). You may assume the result for d=1.
- 3. Let f be locally integrable with respect to Lebesgue measure λ on \mathbb{R}^d . Define

 $Mf(x) := \sup_{x \in B} \frac{1}{\lambda(B)} \int\limits_B f \ d\lambda$

where the supremum is over all balls B containing x. Show that Mf(x) is a Borel measurable function on \mathbb{R}^d . (10)

4. a) Let 2k > d where k and d are positive integers. Let $\Delta := \sum_{i=1}^d \partial_i^2$ be the Laplacian. Show that if $\partial^{\alpha} f$ is continuous in $T^d := [0,1]^d$ and has period one for every multi index $\alpha, |\alpha| \leq 2k$, then the Fourier series for f viz. $\sum_{n \in \mathbb{Z}^d} \hat{f}(n) e^{-2\pi i n \cdot x}$ converges uniformly in T^d .

Hint : Compute the Fourier transform $\int\limits_{T^d} (I-\Delta)^k f(x) e^{-2\pi i n \cdot x} dx$ in terms of

- f(n). (10) b) In a) does the Fourier series for f converge to f? Justify your answer. (5)
- 5. Let $\mathcal S$ be the Schwartz space on $\mathbb R$ and for $f\in\mathcal S$, let Hf denote its Hilbert transform. Show that for each $x\in\mathbb R$, the limit $\lim_{\epsilon\to 0,M\to\infty}\frac{1}{\pi}\int\limits_{\epsilon<|y|< M}\frac{f(x-y)}{y}dy$

exists and for a.e. x, $Hf(x) = \lim_{\epsilon \to 0, M \to \infty} \frac{1}{\pi} \int_{\epsilon < |y| < M} \frac{f(x-y)}{y} dy$. (15)